Summary: Feb. 14, 2017 discussion

Locke Rowe presented “A Preliminary Look at Gender Effects in the EEB PhD Program”. Here’s a brief summary:

Locke discussed data on gender equity for EEB and across the university, focusing on four areas: (1) sex ratio in PhD programs; (2) whether gender alters completion rates (the percentage of students in a cohort who have completed their degrees by a particular year); (3) how leave-taking alters completion rates; (4) interaction effects between advisor and student gender. PhD programs are offered in four divisions (Humanities, Social Sciences, Physical Science, and Life Sciences).

  1. The graduate student populations are female biased in each division except the Physical Sciences, the fastest-growing division.
  1. Students in EEB show slightly higher completion rates and shorter median times to completion than the university-average. There is no evidence that gender alters the time to completion. The analysis lumps together students who enter with and without Masters degrees.
  1. Leaves of absence reduce the completion rate, but perhaps less so for parental vs. other types of leave. Female students have slightly but significantly lower completion rates overall, but females appear to have similar (or even higher) completion rates as male students when they do not take leaves of absence. Leaves seem to increase the time to completion, but does that mean that the leaves are too short to be useful or that there were issues that could not be addressed with a leave of absence? More data—e.g., exit surveys—are needed to understand what causes the correlation between leave-taking and reduced completion rates and what interventions could improve outcomes.
  1. Do female students aggregate in labs with female supervisors? Obtaining data is challenging and that limits the number of departments analyzed. We discussed preliminary trends and alternate ways of analyzing the data once more departments have been included.

Summary: Dec. 14, 2016 discussion

Brechann McGoey led a discussion on life history timing. She has kindly compiled detailed notes, and here is her summary:

I presented steps along the road to parenthood, and then parenting itself, and how each might present unique challenges to women in science. I then discussed the evidence about whether motherhood is a significant contributor to the leaky pipeline problem. We then discussed some possible solutions to the barriers faced by people through pregnancy and parenting. (Note that the focus is on having children, but that is not to imply that there are no other, equally important, family responsibilities for academics. The talk mostly focused on the challenges facing academics who can get pregnant, but all parents will bring their own perspective and face their own challenges based on their identities and life circumstances.)

The timing of competition, the length of training, the poor pay for long periods and winner take all setup mean that academia exacerbates social inequalities and expectations that make it harder for women to balance careers and parenthood. The collective result of all of our best choices given the biological, social and academia-related restrictions may be a pattern where women are underrepresented the faculty level.

Summary: Nov. 18, 2016 discussion

Megan Greischar led a discussion on some of the literature concerning implicit bias. Here is her summary:

I discussed different ways implicit bias is tested for in published literature. Williams & Ceci 2011 PNAS find no consistent pattern when comparing the percentage of PhDs held by females and the percentage of female hires for tenure track positions and infer that there is no systematic bias, and we discussed when these percentages could be misleading (e.g., when departments are growing at different rates). Thomas et al. 2015 PLoS ONE instead model demographic changes in faculty numbers (rather than percentages) and concluding that both the hiring and retention processes must be equitable to achieve parity.

Moss-Racusin et al. 2012 PNAS sent identical CVs for a lab manager positions and found that both male and female faculty ranked male applicants as more competent, hireable, and deserving of mentorship than female candidates. Faculty believed they were ranking real candidates who wished to obtain feedback on their applications. Using a different approach, van Dijk et al. 2014 Current Biology examined the probability of becoming a principal investigator, finding that being male significantly increased the odds of becoming a PI given the same publication record.

Williams & Ceci 2015 PNAS conclude that current faculty (male and female) show a 2:1 preference for hiring female candidates for tenure track positions. Their study differs from previous work in that the faculty knew they were judging hypothetical candidates (“Drs. X, Y and Z”). They were also unambiguously strong applications, which might be expected to reduce bias of research into racial bias (Ginther et al. 2011 Science). Williams & Ceci’s study design reduces bias from gendered language (and they do not examine the effect of gendered language in this study). Haynes & Sweedler 2015 Analytical Chemistry highlight these issues in their response to the Williams & Ceci study.

The subsequent discussion focused on how to detect and address bias. We explored a range of reasons why new hires might be perceived (or perceive themselves) to be less qualified than other candidates. The problem of perceived differences in quality may be especially severe for spousal hires and individuals hired as part of explicit efforts to increase diversity, even when those hires are clearly productive and influential scientists in their own right. We discussed how to deal with those perceived differences.